

Cbeta Arc Lattice Status with Iron Magnets

J. Scott Berg
Brookhaven National Laboratory
Cbeta Collaboration Meeting
May 5, 2016

Status at Previous Meeting

- Had a 250 MeV design for iron magnets, with field maps
 - Matched hard-edge design well
 - Some corrections required
 - Magnet relative displacement reduced by about 5 mm
 - Different scaling factors apply to F and D (different lengths)
 - Required a zig-zag vacuum chamber
- Wanted some changes
 - Smooth vacuum chamber (no corners)
 - Requires increase in magnet aperture
 - Allowed to go down to 200 MeV

Subsequent Activity and Changes

- 200 MeV lattice created, very tight margins on magnets
- Works with smooth beam pipe
- New requirements added
 - Lower horizontal tune (more margin at low energy)
 - Fix arc cell at 5 degrees
 - Needed slightly larger radius for this
 - Have 200 MeV lattices meeting these requirements (margins still tight)

Magnet Margin: Energy

- Desire to have more magnet margin
 - Engineering margin for permanent magnet assembly
 - Field in pole was very high
- Chose energy reduction
 - Initially 166 MeV, which addressed the issues
 - Some expressed a desire to go down to 150 MeV, and that is what I am currently working with

Design Status

- Now have a slightly different design path from before
 - Start with initial hard edge design
 - This fixes the geometry (except displacements)
 - Generate field maps, iterate corrections
 - Initial guess is really close at this point
 - Generate hard edge design that matches field map result
 - Avoids geometry adjustment to close the loop
- Have 150 MeV design with fieldmaps
 - At the sub-mm sub-% correction level
 - Based on 200 MeV back-yoke
 - Geometry chanages tiny even from 200 MeV

Tunes

Tunes

- Extended the good field region a bit and pushed the nonlinearity in the positive direction to hold onto more margin at the high energy end
- Lowered horizontal tune may not be the best choice: it's the high energy end that is fussy
 - Factor of 4 paints you into a corner here
 - Nonetheless, everything looks very good

Fitting the Beam Pipe

- Smooth pipe comes close to inside D pole
- Required clearance to pipe determines minimum pole size
- Want to avoid growing magnet aperture
- Design specifically targets minimum aperture
- Succeeded in keeping clearance to beam with pipe inside poles
 - 2 mm of extra slop
 - From field map experience, I want that 2 mm to be able to deal with unexpected systematics in real magnets
- Have a "fat" pipe giving maximal vertical height
 - Needed to make BPM work with only 4 buttons

Orbits, Minimum Pipe

Minimum Pipe

Nearly Maximal Pipe

Flat Chamber

- After discussions at BNL, we propose to use a flat chamber with 6–8 button BPMs
- Correctors
 - EMMA experience
 - Correction was hard
 - We wanted more correctors
 - Cbeta should be easier
 - Fat chamber prevents correctors in magnets
 - Concerns with correctors in drifts
 - Limited number of locations available
 - Strength
 - Interference from nearby iron?
 - Non-locality of correction as you approach full corrector set

Flat Chamber

- BNL needs to do BPMs for flat chambers anyhow for eRHIC
- We are willing to commit to taking on the BPM system if need be

Wide Flat Pipe

- Minimal pipe: outer orbit is close to the outer edge
- Would rather have pipe go further outside the outer orbit
- There is room

Orbits: Wide Flat Pipe

Wide Flat Pipe

5° Design: Hard Edge

Maximum Energy (MeV)	150	
Reference Radius (m)	5.099439	
L_{DF} (mm)	120	
L_{FD} (mm)	70	
α	F	D
L_{Qlpha} (mm)	133	122
x_{α} (mm)	-7.472	+20.840
Gradient (T/m)	+10.225	-9.642
Δx_{α} for Maps (mm)	+3.235	-3.901

Summary

- We can make lattices that work with field maps and allow a smooth beam pipe
 - Designs have been very stable
 - Have a good process that includes field maps
- 200 MeV pushes the magnets really hard
 - We propose going down to 166 MeV or 150 MeV. Both look fine.
- We (BNL) are proposing to use a flat vacuum chamber and 6–8 button BPMs
 - Allows dipole correctors in magnets
 - BNL will commit to making the BPM system happen